Simplification d'une preuve de l'article de Muñoz

December 15, 2018

We would like to study local existence for the Cauchy problem for
$(P D E)\left\{\begin{array}{cc}i \partial_{t} w+\partial_{x}^{2} w=-\left[2|w|^{2}+w^{2}+|w|^{2} w+2 \operatorname{Re}(w)\right] \\ w(0)=w_{0} & (t, x) \in[0, T] \times \mathbb{R}, w(t, x) \in \mathbb{C} \\ x \in \mathbb{R}\end{array}\right.$
This PDE is studied by Claudio Muñoz in his article "Instability in nonlinear Schrödinger breathers" [1].

We will present a proof of the following local existence theorem:
Theorem 1. For any $T>0$, there exists $\delta=\delta(T)>0$ such that for any $w_{0} \in H^{s}(\mathbb{R}), s>\frac{1}{2}$ and $\left\|w_{0}\right\|_{H^{s}}<\delta$, there exists a solution to $(P D E) w \in$ $C\left([0, T], H^{s}(\mathbb{R})\right)$.

For any $\delta>0$, there exists $T=T(\delta)>0$ such that for any $w_{0} \in H^{s}(\mathbb{R})$, $s>\frac{1}{2}$ and $\left\|w_{0}\right\|_{H^{s}}<\delta$, there exists a solution to $(P D E) w \in C\left([0, T], H^{s}(\mathbb{R})\right)$.

Finally, we have the following alternative: if I is the maximal interval of existence of w, and $\sup I<+\infty$, then $\lim _{t \uparrow \sup I}\|w(t)\|_{H^{s}}=+\infty$.

Proof of the theorem

First, we will consider a linear problem:

$$
(L)\left\{\begin{array}{c}
i \partial_{t} w+\partial_{x}^{2} w=G \\
w(0)=w_{0}
\end{array}\right.
$$

where $G \in C\left([0, T], H^{s}(\mathbb{R})\right)$, with $s \geq 0$.
Definition 2. Let $s \geq 0$ and $T>0$. We say that $w \in C\left([0, T], H^{s}(\mathbb{R})\right)$ is a solution to $(P D E)$ if

1) $w(0)=w_{0} \in H^{s}$
2) $w \in C\left([0, T], H^{s}(\mathbb{R})\right)$
3) for any $\varphi \in C_{c}^{1}(] 0, T[, S(\mathbb{R}))$, we have in sense of distributions

$$
<i \partial_{t} w+\partial_{x}^{2} w, \varphi>=<G, \varphi>
$$

By applying the Fourier transform to (L), we are able to give an explicit expression of the Fourier transform of the solution to the Cauchy problem for (L):

$$
\widehat{w}(t, \xi)=e^{-i \xi^{2} t}\left(\widehat{w_{0}}(\xi)-i \int_{0}^{t} e^{i \xi^{2} \sigma} \widehat{G}(\sigma, \xi) d \sigma\right)
$$

Definition 3. Let $G[w]:=-\left[2|w|^{2}+w^{2}+|w|^{2} w+2 \operatorname{Re}(w)\right]$
The following result is adapted from the corresponding result presented in [1]:
Lemma 4. Assume $w \in H^{s}, s>\frac{1}{2}$. Then $G[w] \in H^{s}$, and

$$
\|G[w]\|_{H^{s}} \lesssim s\|w\|_{H^{s}}+\|w\|_{H^{s}}^{3}
$$

That allows us to have a notion of solution $w \in C\left([0, T], H^{s}\right)$, for $s>\frac{1}{2}$, to ($P D E$).

We will also need the following lemma, which is also adapted from the corresponding lemma in [1]:
Lemma 5. Let $s>\frac{1}{2}$ and $w_{1}, w_{2} \in H^{s}$. Then, we have

$$
\left\|G\left[w_{1}\right]-G\left[w_{2}\right]\right\|_{H^{s}} \lesssim_{s}\left(1+\left\|w_{1}\right\|_{H^{s}}^{2}+\left\|w_{2}\right\|_{H^{s}}^{2}\right)\left\|w_{1}-w_{2}\right\|_{H^{s}}
$$

Let us consider some parameters $\delta, T, \lambda>0, C \geq 1$ and $s>\frac{1}{2}$. We assume that

$$
\left\|w_{0}\right\|_{H^{s}}<\delta
$$

We define the Banach space

$$
\mathcal{B}(\lambda, T, C, \delta, s):=\left\{w \in C\left([0, T], H^{s}\right), \sup _{t \in[0, T]} e^{-\lambda t}\|w(t)\|_{H^{s}} \leq C \delta\right\}
$$

muni de la norme $\|w\|:=\sup _{t \in[0, T]} e^{-\lambda t}\|w(t)\|_{H^{s}}$
We define a function F on $\mathcal{B}(\lambda, T, C, \delta, s)$ such that $F(u)=w$ is the solution of (L) for $G=G[u]$.

Let us first prove the second part of the theorem. Let $\delta>0$ and $s>\frac{1}{2}$. We shall find T, λ, C such that F is a contraction on $\mathcal{B}(\lambda, T, C, \delta, s)$. The fixed point principle allows to finish the proof.

We do the following estimation:

$$
\begin{aligned}
e^{-\lambda t}\|w(t)\|_{H^{s}} & \lesssim s e^{-\lambda t}\|\widehat{w}(t)\|_{L^{2}}+e^{-\lambda t}\left\|\left.\xi\right|^{s} \widehat{w}(t)\right\|_{L^{2}} \\
& \lesssim s e^{-\lambda t} \delta+e^{-\lambda t} \int_{0}^{t}\|G(\sigma)\|_{H^{s}} d \sigma \quad \text { by Minkowski inequality } \\
& \lesssim s e^{-\lambda t} \delta+e^{-\lambda t} \int_{0}^{t}\left(\|u(\sigma)\|_{H^{s}}+\|u(\sigma)\|_{H^{s}}^{3}\right) d \sigma \\
& \lesssim s e^{-\lambda t} \delta+e^{-\lambda t} \int_{0}^{t}\left(e^{\lambda \sigma} C \delta+e^{3 \lambda \sigma}(C \delta)^{3}\right) d \sigma \\
& \lesssim s e^{-\lambda t} \delta+t C \delta+e^{2 \lambda t} t(C \delta)^{3} \\
& \lesssim s e^{-\lambda t} \delta+T C \delta+T e^{2 \lambda T}(C \delta)^{3}
\end{aligned}
$$

This proves that $e^{-\lambda t}\|w(t)\|_{H^{s}} \leq C \delta$ in the case we choose C big enough and then T small enough (there is no condition on λ, but we should fix it before choosing C and T).

We also do the following estimation:

$$
\begin{aligned}
e^{-\lambda t}\left\|w_{1}(t)-w_{2}(t)\right\|_{H^{s}} & \lesssim s e^{-\lambda t} \int_{0}^{t}\left\|G_{1}(\sigma)-G_{2}(\sigma)\right\|_{H^{s}} d \sigma \\
& \lesssim s e^{-\lambda t}\left(1+e^{2 \lambda T}(C \delta)^{2}\right) \int_{0}^{t}\left\|u_{1}(\sigma)-u_{2}(\sigma)\right\|_{H^{s}} d \sigma \\
& \lesssim s e^{-\lambda t}\left(1+e^{2 \lambda T}(C \delta)^{2}\right) T \sup _{\sigma \in[0, t]}\left\|u_{1}(\sigma)-u_{2}(\sigma)\right\|_{H^{s}} \\
& \lesssim s\left(1+e^{2 \lambda T}(C \delta)^{2}\right) T \sup _{\sigma \in[0, t]}\left\|u_{1}(\sigma)-u_{2}(\sigma)\right\|_{H^{s}} e^{-\lambda \sigma} \\
& \lesssim s\left(1+e^{2 \lambda T}(C \delta)^{2}\right) T \sup _{\sigma \in[0, T]}\left\|u_{1}(\sigma)-u_{2}(\sigma)\right\|_{H^{s}} e^{-\lambda \sigma}
\end{aligned}
$$

Thus, it is a contraction in the case we choose T even smaller, if needed.
This proves the second part of the theorem.
Let us now prove the first part of the theorem. Let $T>0$ and $s>\frac{1}{2}$. We shall find δ, λ, C such that F is a contraction on $\mathcal{B}(\lambda, T, C, \delta, s)$. The fixed point principle allows to finish the proof.

The estimation that we have done above for $e^{-\lambda t}\|w(t)\|_{H^{s}}$ is still correct in this case, but we will change a little bit the end:

$$
\begin{aligned}
e^{-\lambda t}\|w(t)\|_{H^{s}} & \lesssim s e^{-\lambda t} \delta+e^{-\lambda t} \int_{0}^{t}\left(e^{\lambda \sigma} C \delta+e^{3 \lambda \sigma}(C \delta)^{3}\right) d \sigma \\
& \lesssim s e^{-\lambda t} \delta+\frac{C \delta}{\lambda}+e^{2 \lambda t} \frac{(C \delta)^{3}}{3 \lambda} \\
& \lesssim s \delta\left(1+\frac{C}{\lambda}+e^{2 \lambda T} \frac{C^{3} \delta^{2}}{3 \lambda}\right)
\end{aligned}
$$

Thus,

$$
e^{-\lambda t}\|w(t)\|_{H^{s}} \leq K_{s} \delta\left(1+\frac{C}{\lambda}+e^{2 \lambda T} \frac{C^{3} \delta^{2}}{3 \lambda}\right)
$$

In order to have $e^{-\lambda t}\|w(t)\|_{H^{s}} \leq C \delta$, it suffices to choose C big enough $\left(C>2 K_{s}\right.$) and then λ big enough (such as $\frac{C}{\lambda}<\frac{1}{4}$) and δ small enough (such as $e^{2 \lambda T} \frac{C^{3} \delta^{2}}{3 \lambda}<\frac{1}{4}$).

Let $A^{3 \lambda}:=\sup _{t \in[0, T]} e^{-\lambda t}\left\|u_{1}(t)-u_{2}(t)\right\|_{H^{s}}$. We would like to make the right choice of constants to have for $t \in[0, T], e^{-\lambda t}\left\|w_{1}(t)-w_{2}(t)\right\|_{H^{s}} \leq \beta A$ with $0<\beta<1$. Now, we will do the following estimation:

$$
\begin{aligned}
e^{-\lambda t}\left\|w_{1}(t)-w_{2}(t)\right\|_{H^{s}} & \lesssim s e^{-\lambda t} \int_{0}^{t}\left\|G_{1}(\sigma)-G_{2}(\sigma)\right\|_{H^{s}} d \sigma \\
& \lesssim s e^{-\lambda t} \int_{0}^{t}\left(1+e^{2 \lambda \sigma}(C \delta)^{2}\right) e^{\lambda \sigma} A d \sigma \\
& \lesssim s \frac{1-e^{-\lambda t}}{\lambda} A+e^{2 \lambda T} T(C \delta)^{2} A \\
& \lesssim s\left(\frac{1}{\lambda}+T e^{2 \lambda T}(C \delta)^{2}\right) A
\end{aligned}
$$

This is a contraction in the case we choose λ even bigger and then δ even smaller, if needed.

This proves the first part of the theorem.
To prove the last statement of the theorem, suppose that there exists $M>0$ such as $t_{n} \rightarrow \sup I$ and $\forall n \in \mathbb{N}\left\|w\left(t_{n}\right)\right\|_{H^{s}} \leq M$. Then, by the second part of the theorem, there exists $T(M)>0$. Take t_{n} such that $\left|t_{n}-\sup I\right|<T(M)$, then the second part of the theorem contradicts the definition of $\sup I$.

