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1. Modified Korteweg-de Vries equation
The modified Korteweg-de Vries equation is written as follows

∂tu+ ∂x(∂xxu+ u3) = 0 (mKdV)

where u : (t, x) ∈ R× R 7−→ u(t, x) ∈ R.
We list some important specificities about (mKdV) equation:

• If the initial data is in Hs for s ≥ 1
4 , then the Cauchy problem

is globally well posed in Cb(R, Hs).

• (mKdV) is a special case of (gKdV) equations, where the cubic
nonlinearity can be replaced by any degree. Another special
case is (KdV) with quadratic nonlinearity.

• Like (KdV), (mKdV) is integrable. That means that we have
an infinity of conservation laws. Here, we use the first three
of them, that is why we reason at H2 level.

• Unlike (KdV), and like (gKdV) equations with odd degree
nonlinearity, if u is a solution of (mKdV), then −u is a solution
of (mKdV).

• Unlike other (gKdV) equations, (mKdV) equation has special
breather solutions.

2. Solitons and antisolitons of (mKdV)
For c > 0, we set a regualar, positive and pair function:

Qc(x) =
(

2c
cosh2 (√cx)

) 1
2

.

Definition. A soliton of (mKdV) is the following solution of
(mKdV): Rc(t, x;x0) = Qc(x − x0 − ct) with x0 ∈ R and c > 0.
An antisoliton of (mKdV) is the following solution of (mKdV):
Rc(t, x;x0) = −Qc(x− x0 − ct) with x0 ∈ R and c > 0.

Figure 1: We see three solitons with distict velocities c, centered at the
same point. The more c is large, the more the soliton is tall and narrow
(and fast). A soliton moves with a constant velocity c to the right without
deformation, starting from the initial position x0.

3. Breathers of (mKdV)
Definition. For α, β ∈ R\{0} and x1, x2 ∈ R, a breather of
(mKdV) is given by:

Bα,β(t, x;x1, x2) = 2
√

2∂x
[
arctan

(
β

α

sin(αy1)
cosh(βy2)

)]
,

où y1 := x + δt + x1, y2 := x + γt + x2, δ := α2 − 3β2 et
γ := 3α2 − β2.

We can see a breather as a function periodic in time that, in
addition, propagates at a constant velocity. The velocity of
propagation is −γ. Unlike a soliton, it can be positive, zero or
negative.

Remarks.
We do not need to define an "antibreather", because it is enough to
replace the parameter x1 by x1 + π

α .
When α→ 0 with β fixed, Bα,β tends to another special solution of
(mKdV): the double-pole solution: it is a soliton-antisoliton pair
splitting up at loagarithmic rate. What we prove for breathers is not
true for this limit.

Figure 2: At the left, a breather with parameters α = 9 and β = 1. At
the right, a breather with parameters α = 1.5 and β = 1.

Figure 3: Evolution of a breather in time.

4. Useful conservation laws of (mKdV)

Proposition. For u a solution of (mKdV), the following integrals are
conserved in time:

M [u] = 1
2

∫
u2, E[u] = 1

2

∫
u2
x −

1
4

∫
u4,
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2

∫
uxx
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2
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u2u2

x + 1
4

∫
u6.

Proposition. For c, α, β > 0,

M [Rc] = 2c1/2, M [Bα,β ] = 4β,

E[Rc] = −2
3c

3/2, E[Bα,β ] = −4
3β(β2 − 3α2),

F [Rc] = 2
5c

5/2, F [Bα,β ] = 4
5β(β4 − 10β2α2 + 5α4).

5. Chronology of some key results about dynamics of solitons of breathers
1973 (Wadati) Discovery of breathers by inverse scattering method [6].
1986 (Weinstein) H1 orbital stability of (gKdV) solitons [5].
2001 (Martel, Merle) Asymptotic stability of (gKdV) solitons [8].
2002 (Martel, Merle, Tsai) H1 orbital and asymptotic stability of a sum of solitons of (gKdV) [4].
2005 (Martel) Existence and uniqueness inH1 of multisolitons of (gKdV) for a given set of distinct velocities. Existence

in Hs for s ≥ 1 [2].
2013 (Alejo, Muñoz) Orbital stability in H2 of (mKdV) breathers [1].
2019 (Chen, Liu) Soliton-breather resolution of (mKdV) [7].

6. Presentation of the problem
We consider given P1, ..., PJ a set of solitons and breathers, and we suppose that their velocities are
ordered in an increasing order v1 < ... < vJ . We denote x1(t), ..., xJ(t) their positions. We are interested
in their sum:

P (t, x) =
J∑
j=1

Pj(t, x).

We ask ourselves if there exists a solution p of (mKdV) such that

‖P (t)− p(t)‖H2 →t→+∞ 0.

We also ask ourselves if such a solution is unique and if such a solution satisfies a form of stability.

Figure 4: Example of such an object for the case of three different solitons. This case is already well studied, it is
a multisoliton. We can observe that, for a time large enough, the fastest solitons are at the right and the slowest
are at the left, i.e. the solitons are ordered by increasing velocity. We want to find out what happens if we add
breathers to this set of objects.

In 1982, by inverse scattering method, Wadati and Okhuma have found the following explicit formula for
multi-breathers:

p(t, x) = 2
√

2∂x arctan[= det(I + V )/<det(I + V )],

where I is the identity matrix and V is a matrix defined from parameters of the considered set of solitons
and breathers and can be found in [10].
This formula permits to give us a solution that is a multi-breather when t → +∞ and when t → −∞
for the same set of objects, but with different translation parameters. It also allows us to have a multi-
breather for any translation parameters when t→ +∞.
But, it doesn’t allow us to see in which sense p tends to P when t→ +∞, nor to see if the multi-breather
is unique or stable. We do not use this formula in our proofs.

7. New proven results
By a suitable adaptation of ideas from [1, 2, 3, 4], we prove the following results:

Theorem 1
There θ > 0, T ∗ > 0 and As > 0 for any s ≥ 2 such that there exists a solution u ∈ C([T ∗,+∞), H2(R))
of (mKdV) such that,

∀t ≥ T ∗, ‖u(t)− P (t)‖Hs ≤ Ase−θt.

Moreover, if there exists D > 0 such that for all j ≥ 2, xj(0) ≥ xj−1(0) + D, then As, θ, T ∗ do not
depend on translation parameters of our objects, but only on the shape parameters and on D.

Theorem 2
If v2 > 0, there exists A0, θ0, D0, a0 > 0 such that the following is true. Let u0 ∈ H2(R), D ≥ D0 and
0 ≤ a ≤ a0, such that

‖u0 − P (0)‖H2 ≤ a, and xj(0) > xj−1(0) + 2D, for all j = 2, ..., J.

Let u(t) be a solution of (mKdV) such that u(0) = u0. Then, there exists translation parameters defined
for any t ≥ 0 such that

∀t ≥ 0, ‖u(t)− P̃ (t)‖H2 ≤ A0(a+ eθ0D),

where P̃ corresponds to P with modified translation parameters.

Theorem 3
If v2 > 0, there exists a unique solution u ∈ C([T ∗,+∞), H2(R)) of (mKdV), for some T ∗ > 0, such
that

‖u(t)− P (t)‖H2 →t→+∞ 0.
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8. Further perspectives of research
• Asymptotic stability for breathers moving to the right and for multi-breathers constituted of solitons and breathers moving to the right,

should work by adapting the arguments from [8].

• Study the double-pole solution, is it unique? It is certainly not stable, though.


